Solve ax²+bx+c=0 by completing Square
PurnaBargare Parinat Kari Samadhan Kara
(Sridhar Acharya Method)
ax²+bx+c=0
⇒4a(ax²+bx+c=0) multiply the equation with 4a
⇒4a²x²+4abx+4ac=0
⇒4a²x²+4abx=-4ac
⇒(2ax)²+2.2ax.b+(b)²=-4ac+(b)²
⇒(2ax+b)²=(b)²-4ac
⇒ 2ax+b=±√(b²-4ac)
⇒2ax=-b±√(b²-4ac)
⇒x={-b±√(b²-4ac)}/2a
Hence the two roots are {-b±√(b²-4ac)}/2a
Example: Solve the Quadratic equation by competing square(Purna Bargare Parinat Kari Samadhan Kara)
(Sridhar Acharya Method)
2x²-9x+4=0
Solution:
2x²-9x+4=0
⇒4×2(2x²-9x+4)=0multiply the equation with 4a
⇒16x²-72x+32=0
⇒(4x)²-72x=-32
⇒(4x)²-2.4x.9+(9)²=-32+(9)²
⇒(4x-9)²=(9)²-32
⇒4x-9=±√49
⇒4x=9±7
⇒x=(9+7)/4
=16/4
=4
Or
x=(9-7)/4
=2/4
=1/2
Hence the two roots are 4 & 1/2
Solve by completing square |
0 Comments